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azabicyclo[3.1.0]hex-2-ene derivative nor a side reaction such 
as nitrogen extrusion was observed. 

The above experimental evidence clearly indicates that az-
iridine formation, which has been proved by Huisgen17 not to 
occur during intermolecular 1,3-dipolar cycloaddition reac­
tions of diazomethanes and olefins, can take place intramo­
lecular!}'. Since MO calculations18 show that the contribution 
of a nitrene-like structure of the terminal nitrogen of diazo-
methane in its ground state is unimportant, a 1,1 cycloaddition 
through a nitrene form seems unfeasible. Plausible mechanistic 
alternatives, which are yet open without detailed stereo­
chemical studies,19 however, involve reactions of a linear di-
azomethane either via a stepwise pathway to form "a six-
membered dipole C"20 or via a concerted cheletropic path­
way.22 Nevertheless, the results described here provide a novel 
example of the intramolecular reactivity of 2-allyl-substituted 
diazomethanes and also provide a useful synthesis of 1,2-di-
azabicyclo[3.1.0]hex-2-enes. Details of stereochemical studies 
will be reported soon. 
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Comment on the Electronic Structure of 
HAlOH and H2O-Al 

Sir: 

The interaction of ground- and excited-state metal atoms 
with water molecules has attracted considerable experimen­
tal '~5 and theoretical6 interest. Matrix isolation studies by 
Grandsden and co-workers' indicate that aluminum interacts 
with water to yield the metal hydroxyhydride. Oblath and 
GoIe2 have suggested that emission from excited HAlOH may 
be responsible for the continuum resulting from the reaction 
of Al with H2O in the gas phase. In this communication we 
present the results of theoretical calculations which suggest 
that insertion of Al into H2O to yield HAlOH is exothermic 
by ^38 kcal/mol. Moreover, we find that there exist reaction 
paths leading to the HAlOH which are fully attractive, i.e., 
without a barrier. 

To find the lowest energy structures of HAlOH and C2r 
H2O-Al, we have employed the spin-unrestricted Hartree-
Fock approximation, together with the effective core potential 
procedure7 for aluminum. In this procedure only the valence 
(3s and 3p) electrons of the aluminum atom are treated ex­
plicitly, the inner core being modeled by an effective potential. 
This greatly reduces the cost of the calculations. The 3s/4p 
basis set of Topiol et al.7 was employed for aluminum, while 
Dunning's8 double f basis sets were employed for hydrogen and 
and oxygen. We have repeated the calculations at the opti­
mized geometries for HAlOH and the Cu- H2O-Al adduct, 
treating all the electrons explicitly and employing the alumi­
num basis set of Trenary et al.6 The comparison of the all-
electron and effective core potential results is especially im­
portant since core potentials are being increasingly applied to 
the study of complicated molecules. 

The 2B2 state of the C2,- H2O-Al has been previously treated 
at the SCF level by Trenary et al. who found an equilibrium 
Al-O separation of 2.55 A, corresponding to a dissociation 
energy (to Al + H2O) of 4.4 kcal/mol. In the present study, 
the optimized C2t geometry has an Al-O separation of 2.12 
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A and a dissociation energy9 of 12.3 kcal/mol using the model 
potential and 8.5 kcal/mol in the all-electron calculation. We 
also find that the 2Bi state is bound by ~7.0 kcal/mol while 
the 2Ai state is unbound. 

For the HAlOH structure, we have carried out a complete 
optimization of all bond lengths and angles. The resulting 
HAlOH species is stable by 54.3 kcal/mol (38.1 kcal/mol in 
the all-electron calculation) with respect to H2O + Al and has 
a HAlO bond angle nearly the same as the HAlH angle of 
AlH2 and an Al-H bond distance close to that OfAl-H2.10 Our 
minimum energy structures for the HAlOH and C2r H2O-Al 
species are shown. The charge densities obtained from a 
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one electron to the H and OH groups. On the other hand, the 
aluminum atom carries a small negative charge (0.1 e) in the 
C2, adduct. ESR studies3 on the H2O-Li and H2O-Na com­
plexes have shown that the metal atom is negatively charged. 
This has also been found in the theoretical studies of Trenary 
et al.6 

The differences between the geometry and energy of the C21 

species obtained in the present study and those of Trenary et 
al. arise primarily from two sourses: (1) the use of the effective 
core potential for Al and (2) differences in the basis sets em­
ployed, mainly the lack of d functions in our work. As noted 
earlier, all-electron C2,- calculations using a 6s4p Al basis re­
duce the dissociation energy to only 8.5 kcal/mol and give an 
optimal Al-O distance of 2.25 A. For HAlOH, these calcu­
lations give an Al-O distance of 1.68 A and an HAlO angle 
of 118.11°. From these results it seems that removal of the Al 
core potential does not have a significant effect on the structure 
of these compounds. At present we are exploring the effect of 
the basis set by adding d functions to both the O and Al and 
reoptimizing the HAlOH and H2O-Al structures. 

Gransden et al.1 have found that the Al-H and O-H 
stretching frequencies of AlOH are 1743 and 818 cm - 1 , re­
spectively, indicating that -the HAlOH complex is strongly 
bound. This is borne out by the results of the present study. The 
all-electron calculations, carried out at the geometry optimized 
using the effective potential, indicate that the HAlOH species 
is stable (with respect to Al + H2O) by 38 kcal/mol. Reop-
timization of the geometry in the all-electron SCF procedure 
should give rise to a slightly larger value. 

While we have not yet mapped out the complete potential 
energy surface and have not established the minimum energy 
path for the Al + H2O insertion, we have found that the ap­
proach of Al perpendicular to one of the O-H bonds inserts 
without encountering a barrier. Furthermore, we believe that 
the C2,- species may be a local minimum on the potential energy 
surface. However, the barrier for the H2O-Al —• HAlOH re­
arrangement may be small. 

In addition to the more detailed studies employing d func­
tions, examination of the effects of electron correlation are 
under was on the HAlOH species. We have also begun to ex­

amine the reaction of H2O with other metals including Be, B, 
Mg, Sc, and Zn. Preliminary studies of B + H2O indicate that 
HBOH is stable by 68 kcal/mol with respect to the reactants. 
We have found that, in agreement with Trenary et al.,6 that 
the ground state of Li (2S) + H2O is the C2, H2O-Li adduct. 
There is the interesting possibility that the 2P excited state of 
Li inserts into water to form the hydroxy hydride as do Al and 
B. The thermal Sc -I- H2O reaction has been shown by Liu and 
Parson to yield ScO + H2. The role of the unpaired d electron 
in this reaction is especially interesting. Hange, Kauffman, and 
Margrave1' have observed spontaneous reactions of Sc, Ti, and 
V with water to form ScO, TiO, and VO, respectively, in rare 
gas matrices at 10 K. 
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pH-Dependent Constraint Angle Effects on the 
Order Parameters of Bilayer Systems 

Sir: 

It has recently been reported that the absolute values of the 
quadrupole splittings for specifically deuterated cis unsaturated 
phospholipids in bilayer model membranes yield an unusual 
order parameter profile.' The degree of order of a C—D bond 
axis, 5*CD, depends upon the angle 8 between the C—D bond 
axis and the director. Because of the geometric constraint of 
the cis C = C bond, the degree of order undergoes a dramatic 
decrease in magnitude near the site of unsaturation and then 
rises once more to a value close to that of a fully saturated chain 
before falling off once more as the mobile chain terminus is 
approached. We have observed that the degree of order profile 
for bilayer lyotropic liquid crystalline systems depends upon 
several factors, one of which involves constraints placed upon 
the orientation of amphiphilic molecules in a bilayer model 
membrane.1 -" It is reported here that, in certain cases, these 
constraints may be pH dependent. 
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